UK Biobank data to fuel drug discovery

Jonathan Marchini Executive Director, Head of Statistical Genetics and Machine Learning

Regeneron Genetics Center (RGC)

Established in 2014 and is now one of the largest operational human sequencing efforts

Mission:

Taking large scale human genetics to the next level for target discovery, support existing targets and identify novel indications

Regeneron Genetics Center: Unprecedented Speed, Scale & Integration

All accomplished in just the first 9 years!

RGC has the most diverse collection and catalogue of human coding variation to date

The New York Times

Hospital and Drugmaker Move to Build Vast Database of New Yorkers' DNA

Patients will be asked if their genetic sequence can be added to a database — shared with a pharmaceutical company — in a quest to cure a multitude of diseases.

🛱 Give this article 🔗 🗍 🖵 97

Wilbert Gibson is a Mount Sinai patient who agreed to let the hospital system use his genetic information in research for treatment of a variety of diseases. Hiroko Masuike/The New York Times

Exome sequencing of all 500,000 UK Biobank participants

The exons are the 1-2% of the genome that encode the proteins.

- Regeneron led consortium of commercial companies.
- All 500,000 sequences made available in mid-2022.

Current Issue First release papers Archive About V

Submit manuscript

HOME > SCIENCE > SEQUENCING OF 640,000 EXOMES IDENTIFIES GPR75 VARIANTS ASSOCIATED WITH PROTECTION FROM OBESITY

Science RESEARCH ARTICLE

Sequencing of 640,000 exomes identifies *GPR75* variants associated with protection from obesity

PARSA AKBARI (D, ANKIT GILANI (D, OLUKAYODE SOSINA (D, JACK A. KOSMICKI (D, LORI KHRIMIAN (D, YI-YA FANG, TRIKALDARSHI PERSAUP (D, VICTOR GARCIA (D, D) DYLAN SUN (D, ALEXANDER LI (D, JOELLE MBATCHOU, ADAM E LOCKE (D, CHRISTIAN BENNER, NIEK VERWEIJ (D, NAN LIN, SAKIB HOSSAIN, KEVIN AGOSTINUCCI, JONATHAN V PASCALE (D, ERCUMENT DIRICE (D, MICHAEL DUNN, REGENERON GENETICS CENTER[‡], DISCOVEHR COLLABORATION[‡], WILLIAM E. KRAUS (D, SVATI H, SHAH, YI-DGE I, CHRISTIAP BENNER, NIEK VERWEIJ (D, NAN LIN, SAKIB HOSSAIN, KEVIN AGOSTINUCCI, JONATHAN V PASCALE (D, ERCUMENT DIRICE (D, MANIEL J, RADER (D, OLLE MELANDER, CHRISTOPHER D, STILL (D, TOORAJ MIRSHAHI (D, DAVID J, CAREY (D, J JAIME BERUMEN-CAMPOS (D, PABLO KURI-MORALES (D, JESUS ALEGRE-DÍAZ (D, JASON M, TORRES (D, JONATHAN R, EMBERSON (D, ROY COLLINS (D, S), SUGANTHI BALASUBRAMANIAN (D, ALICIA HAWES, MARCUS JONES, BRIAN ZAMBROWICZ (D, ANDREW J, MURPHY (D, CHARLES PAULDINS (D, SIOVANNI COPPOLA (D, J JOHN D, OVERTON (D, JEFFREY G, REID (D, ALAN R, SHULDINER (D, MICHAEL CANTOR, HYUN M, KANS (D, GONCALO R, ABECASIS, KATIA KARALIS, ARIS N, ECONOMIDES (D, JONATHAN MARCHINI (D, GEORGE D, VANCOPOULOS, MARK W, SLEEMAN, JUDITH ALTAREJOS, GIUSY DELLA GATTA (D, ROBERTO TAPIA-CONYER (D, MICHAEL SCHWARTZMAN, ARIS BARAS, MANDLLA R, FERREIRA AND LUCA A. LOTTA (D) Authors Info & Athrons Info & Affiliations

- Rare predicted loss of function coding variants in *GPR75* for heterozygous carriers found to be associated with
 - Lower BMI (-1.8 kg/m²)
 - Lower body weight (~5.3 kg or 11.6 lbs lower)
 - Protection against obesity (54% lower odds)

Study	Beta (95% CI) in SDs of BMI	Genotypes (RR RA AA)	p-value	Beta (95% CI) in kg/m ² of BMI	Beta (95% CI) in kg of body weigh
Discovery Cohorts					
MCPS +	-0.48 (-0.82, -0.13)	95,816 30 0	7.1E-03	-2.6 (-4.4, -0.7)	-7.4 (-12.8, -2)
GHS_EUR	-0.27 (-0.52, -0.02)	121,010 51 0	3.6E-02	-1.4 (-2.8, -0.1)	-4.2 (-8, -0.3)
UKB_EUR +	-0.34 (-0.49, -0.19)	428,572 147 0	6.6E-06	-1.8 (-2.6, -1)	-5.3 (-7.6, -3)
Subgroup meta-analysis results	-0.34 (-0.46, -0.22)	645,398 228 0	2.6E-08	-1.8 (-2.5, -1.2)	-5.3 (-7.1, -3.4)

REGENERON

Diverse RGC cohorts: Novel genetic discoveries and therapeutic targets

nature communications

6

https://doi.org/10.1038/s41467-022-32398-7

Article

Multiancestry exome sequencing reveals *INHBE* mutations associated with favorable fat distribution and protection from diabetes

Received: 8 February 2022	Parsa Akbari ^{1,13} , Olukayode A. Sosina © ^{1,13} , Jonas Bovijn ^{1,13} , Karl Landheer © ² ,					
Accepted: 28 July 2022	Jonas B. Nielsen', Minhee Kim', Senem Aykul [®] ', Tanima De', Mary E. Haas [®] ', George Hindy ¹ , Nan Lin ¹ , Ian R. Dinsmore ³ , Jonathan Z. Luo ³ , Stefanie Hectors ² ,					
Published online: 23 August 2022	Benjamin Geraghty ¹ , Mary Germino ² , Lampros Panagis ² , Prodromos Parasoglou ² ,					
A Check for updates	 Johnathon R. Walls', Gabor Halasz', Gurinder S. Atwal', Regeneron Genetics Center*, DiscovEHR Collaboration*, Marcus Jones¹, Michelle G. LeBlanc¹, Christopher D. Still⁴, David J. Carey⁴, Alice Giontella^{5,6}, Marju Orho-Melander ©⁵, Jaime Berumen ©⁷, Pablo Kuri-Morales^{7,8}, Jesus Alegre-Diaz ©⁷, Jason M. Torres³¹⁰, Jonathan R. Emberson ©⁹¹⁰, Rory Collins¹⁰, Daniel J. Rader ©¹, Brian Zambrowicz ©², Andrew J. Murphy ©², Suganthi Balasubramanian¹, John D. Overton¹, Jeffrey G. Reid ©¹, Alan R. Shuldiner ©¹, Michael Cantor¹, Goncalo R. Abecasis ©¹, Menuel A. D. Eorsein ©¹ Molt W. Slopmer², Vilitzi C. Weith Altersio² 					
	manuet A. K. Ferreira ⊌, mark w. Steeman ⁻ , Viktoria Gusarova ⁻ , Judith Attarejos ⁻ , Charles Harris ² , Aris N. Economides © ^{1,2} , Vincent Idone ² , Katia Karalis ¹ , Giusy Della Gatta ¹ , Tooraj Mirshahi [®] , George D. Yancopoulos ² , Olle Melander ^{5,12} , Jonathan Marchini [®] ¹ , Roberto Tapia-Conyer ^{© 8,13} , Adam E. Locke ^{® 1,13} , Aris Baras ^{® 1,13} , Niek Verweij ^{1,13} & Luca A. Lotta ^{® 1,13}					

Akbari et al. (2022) Nat Commun 13, 4844

Association with favorable fat distribution (p= $1.8 \times 10-09$), favorable metabolic profile and protection from type 2 diabetes (~28% lower odds; p= 0.004) for heterozygous protein-truncating mutations in INHBE The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Germline Mutations in CIDEB and Protection against Liver Disease

N. Verweij, M.E. Haas, J.B. Nielsen, O.A. Sosina, M. Kim, P. Akbari, T. De, G. Hindy, J. Bovijn, T. Persaud, L. Miloscio, M. Germino, L. Panagis, K. Watanabe, J. Mbatchou, M. Jones, M. LeBlanc, S. Balasubramanian, C. Lammert, S. Enhörning, O. Melander, D.J. Carey, C.D. Still, T. Mirshahi, D.J. Rader, P. Parasoglou, J.R. Walls, J.D. Overton, J.G. Reid, A. Economides, M.N. Cantor, B. Zambrowicz, A.J. Murphy, G.R. Abecasis, M.A.R. Ferreira,
E. Smagris, V. Gusarova, M. Sleeman, G.D. Yancopoulos, J. Marchini, H.M. Kang, K. Karalis, A.R. Shuldiner, G. Della Gatta, A.E. Locke, A. Baras, and L.A. Lotta
Verweij et al. (2022) N Engl J Med 387:332-344

Rare predicted loss-of-function variants plus missense variants in CIDEB associated with 33% lower odds of liver disease of any cause

The UK Biobank Imaging Study

Can UKB whole body MRI be used to assess breast density?

Breast density is a risk factor for breast cancer, independent of other known risk factors¹

- Women with density > 75% have an increased risk (range across 4 studies: 2.82-5.99) compared to women with < 10% density²
- Approximately 1/3 of breast cancer risk may be attributable to density (2 studies, attributable risk percent = 28% and 33%)²
- Breast density is modifiable—tamoxifen-induced reduction of density decreases the risk of subsequent breast cancer ³

Breast density has a strong genetic component

2 GWAS (BCAC and Kaiser) have identified 46 independent genome-wide significant breast density loci for three measures of breast density: dense area, non-dense area, and percent dense area, from mammograms. No ExWAS has been conducted to date

¹McCormack and dos Santos Silva. *CEPB* 2006 15:1159-1169 ⁴Boyd, NF ²Boyd, NF et al. *Lancet Oncology* 2005 6:798-808 ³Cuzick, J et al. *JNCJ* 2011 103:744-752

9-1169 4Boyd, NF et al. NEJM 2002 347:886-894

⁵Lindström, S, et al. *Nat Gen.* 2011 43(3):185-187 ⁶Lindström, S, et al. *Nat Comms.* 2014 5(1):1-8 ⁷Sieh, W, et al. *Nat Comms.* 2020 11(1):5116

Step 1 : Segment breasts Ground truth breast segmentations from 122 subjects (~5,000 2D images) were used to train a U-Net model

Step 2 : Measure density within breasts Water and fatfraction maps were generated and used to derive:

Dense Volume (DV) = $\frac{Water}{Water+Fat}$ Non-Dense Volume (NDV) = $\frac{Fat}{Water+Fat}$

9

RGC

GWAS with MRI-derived Breast Density Phenotypes

Genetic associations with MRI-derived dense volume recapitulate associations with known breast density loci

Internal (y-axis) and external (x-axis) effect estimates are <u>directionally consistent at 26</u> variants across previously published loci

Data at this scale requires highly efficient and flexible analysis

Technical Report | Published: 20 May 2021

RGC

Computationally efficient whole-genome regression for quantitative and binary traits

Joelle Mbatchou, Leland Barnard, Joshua Backman, Anthony Marcketta, Jack A. Kosmicki, Andrey Ziyatdinov, Christian Benner, Colm O'Dushlaine, Mathew Barber, Boris Boutkov, Lukas Habegger, Manuel Ferreira, Aris Baras, Jeffrey Reid, Goncalo Abecasis, Evan Maxwell & Jonathan Marchini

https://rgcgithub.github.io/regenie/

Nature Genetics 53, 1097–1103 (2021) Cite this article

regenie	Home	Overview	Install	Documentation	Performance	UKBB Analysis	F.A.Q.		Q Search	← Previous	Next 🗲
rogonio											
Oitetien				regenie							
Citation				regenie is a C++ program for whole genome regression modelling of large genome-wide association studies							
License				regenie is a C++ program for whole genome regression modelling of large genome-wide association studies.							
Contact				It is developed and supported by a team of scientists at the Regeneron Genetics Center.							
				The method ha	s the following	g properties					
	a It works on quantitative and hinany traits including hinany traits with with a balanced ence control ratios										
				 It works of 	dle population	and binary dai	rolatodnoss	inary craits with dribala	iceu case-c		
				• It can nam	coss multiplou			,			
						onenotypes at t	is regression	and an CDA tast			
				For binary	r traits, it supp	ionts Firth logist	(Develop CIA	anu an SPA lesi			
				 It can perf 	orm gene/reg	lon-based tests	(Burden, SKA))		
				 It can perf 	form interaction	on tests (GxE, G	xG) as well as	conditional analyses			
				 It is fast ar 	nd memory ef	ficient 🤚					
				 It supports 	s the <mark>BGEN, P</mark>	LINK bed/bim/fa	am and <mark>PLINK</mark>	<mark>2</mark> pgen/pvar/psam gene	etic data for	rmats	
				 It is ideally 	/ suited for im	plementation ir	n Apache Spar	k (see GLOW)			
				• It can be i	nstalled with (Conda					

Efficient meta-analysis of gene-based tests (REMETA)

Gene-based meta-analysis on an industrial scale

Challenge scale/ease-of-use when there are many cohorts, phenotypes/sub-phenotypes...

p-values

Sparse LD can be stored compactly

Using a reference LD file per cohort is accurate

Meta-analysis workflow

RGC presentations at ASHG

RGC Author	Assignment	Title	Presentation Date	Presentation Time	Location ***
Kuan-Han Wu	Platform	Rare variants associated with prostate cancer risk discovered from 255,640 male exomes influence risk of prostate cancer metastasis	02 November 2023	9:15 a.m. – 9:30 a.m.	Conv Ctr/Room 146B/Level 1
Joelle Mbatchou	Poster	Using protein language model annotations to improve the power of exome-wide association studies (PB4424)	02 November 2023	3:00 p.m. – 5:00 p.m.	Exhibit & Poster Hall, Halls A/B
Vijay Kumar	Poster	Population-scale analysis of the trinucleotide repeat expansion in the Huntingtin gene (HTT) from 854,251 human exomes (PB1723)	02 November 2023	3:00 p.m. – 5:00 p.m.	Exhibit & Poster Hall, Halls A/B
Yuxin Zou	Poster	Joint fine-mapping of single variants and gene-based tests from exome sequencing and genotype imputation (PB4238)	02 November 2023	3:00 p.m. – 5:00 p.m.	Exhibit & Poster Hall, Halls A/B
Veera Rajagopal	Platform	Discovering genes linked to both cognition and psychiatric disorders through analysis of 888,052 exomes	03 November 2023	2:15 p.m. – 2:30 p.m.	Conv Ctr/Ballroom B/Level 3
Rujin Wang	Platform	A large-scale meta-analysis of genome-wide association studies reveals genetics underlying Parkinson's Disease leveraging electronic health records	03 November 2023	2:30 p.m. – 2:45 p.m.	Conv Ctr/Room 207A/Level 2
Arden Moscati	Poster	Genetic ancestry-based case-control matching to improve power to trait-specific association analysis (PB4158)	03 November 2023	3:00 p.m. – 5:00 p.m.	Exhibit & Poster Hall, Halls A/B
Ariane Ayer	Poster	Phenome-wide genetic associations of educational attainment with mental and behavioral disorders (PB1706)	03 November 2023	3:00 p.m. – 5:00 p.m.	Exhibit & Poster Hall, Halls A/B
Liron Ganel	Poster	Rare variant analysis of MRI-derived fat distribution phenotypes strengthens detected effects compared to larger meta- analysis (PB1754)	03 November 2023	3:00 p.m. – 5:00 p.m.	Exhibit & Poster Hall, Halls A/B
Sahar Gelfman	Poster	A large meta-analysis identifies genes associated with Anterior Uveitis (PB1313)	03 November 2023	3:00 p.m. – 5:00 p.m.	Exhibit & Poster Hall, Halls A/B
Tyler Joseph	Poster	REMETA: Efficient meta-analysis of gene-based tests in large-scale genetic studies (PB4350)	03 November 2023	3:00 p.m. – 5:00 p.m.	Exhibit & Poster Hall, Halls A/B
Jack Kosmicki	Platform	Exome sequencing of >1 million individuals identifies 209 genes associated with adult human height	04 November 2023	10:45 a.m. – 11:00 p.m.	Conv Ctr/Room 202A/Level 2
Blair Zhang	Poster	Genetic risk score in age-related macular degeneration subtypes across electronic health record cohorts (PB4168)	04 November 2023	2:15 p.m. – 4:15 p.m.	Exhibit & Poster Hall, Halls A/B
Manav Kapoor	Poster	Genome-wide exploration of positively selected loci and their association to disease phenotypes in 30,000 individuals from Sri Lanka and Bangladesh (PB3072)	04 November 2023	2:15 p.m. – 4:15 p.m.	Exhibit & Poster Hall, Halls A/B
Sophia Praggastis	Poster	A genome-wide meta-analysis connects iron homeostasis to metabolic disease through poly-unsaturated fatty acid synthesis (PB1308)	04 November 2023	2:15 p.m. – 4:15 p.m.	Exhibit & Poster Hall, Halls A/B
Kathy Burch	Platform	Leveraging ~937K exomes to estimate cancer risk conferred by rare deleterious germline variants in hereditary cancer risk genes	05 November 2023	10:00 a.m. – 10:15 a.m.	Conv Ctr/Room 202A/Level 2

*** Location: Walter E. Washington Convention Center